direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×C4×D13, C52⋊3C23, C26.2C24, C23.34D26, Dic13⋊3C23, D26.16C23, C13⋊2(C23×C4), C26⋊2(C22×C4), (C22×C52)⋊10C2, (C2×C52)⋊14C22, C2.1(C23×D13), (C2×C26).63C23, (C23×D13).5C2, (C2×Dic13)⋊12C22, (C22×Dic13)⋊10C2, (C22×C26).44C22, C22.29(C22×D13), (C22×D13).44C22, (C2×C26)⋊9(C2×C4), SmallGroup(416,213)
Series: Derived ►Chief ►Lower central ►Upper central
C13 — C22×C4×D13 |
Generators and relations for C22×C4×D13
G = < a,b,c,d,e | a2=b2=c4=d13=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1328 in 236 conjugacy classes, 145 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C23, C13, C22×C4, C22×C4, C24, D13, C26, C26, C23×C4, Dic13, C52, D26, C2×C26, C4×D13, C2×Dic13, C2×C52, C22×D13, C22×C26, C2×C4×D13, C22×Dic13, C22×C52, C23×D13, C22×C4×D13
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, D13, C23×C4, D26, C4×D13, C22×D13, C2×C4×D13, C23×D13, C22×C4×D13
(1 128)(2 129)(3 130)(4 118)(5 119)(6 120)(7 121)(8 122)(9 123)(10 124)(11 125)(12 126)(13 127)(14 107)(15 108)(16 109)(17 110)(18 111)(19 112)(20 113)(21 114)(22 115)(23 116)(24 117)(25 105)(26 106)(27 147)(28 148)(29 149)(30 150)(31 151)(32 152)(33 153)(34 154)(35 155)(36 156)(37 144)(38 145)(39 146)(40 136)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 131)(49 132)(50 133)(51 134)(52 135)(53 180)(54 181)(55 182)(56 170)(57 171)(58 172)(59 173)(60 174)(61 175)(62 176)(63 177)(64 178)(65 179)(66 160)(67 161)(68 162)(69 163)(70 164)(71 165)(72 166)(73 167)(74 168)(75 169)(76 157)(77 158)(78 159)(79 196)(80 197)(81 198)(82 199)(83 200)(84 201)(85 202)(86 203)(87 204)(88 205)(89 206)(90 207)(91 208)(92 183)(93 184)(94 185)(95 186)(96 187)(97 188)(98 189)(99 190)(100 191)(101 192)(102 193)(103 194)(104 195)
(1 78)(2 66)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 73)(10 74)(11 75)(12 76)(13 77)(14 55)(15 56)(16 57)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 65)(25 53)(26 54)(27 98)(28 99)(29 100)(30 101)(31 102)(32 103)(33 104)(34 92)(35 93)(36 94)(37 95)(38 96)(39 97)(40 90)(41 91)(42 79)(43 80)(44 81)(45 82)(46 83)(47 84)(48 85)(49 86)(50 87)(51 88)(52 89)(105 180)(106 181)(107 182)(108 170)(109 171)(110 172)(111 173)(112 174)(113 175)(114 176)(115 177)(116 178)(117 179)(118 162)(119 163)(120 164)(121 165)(122 166)(123 167)(124 168)(125 169)(126 157)(127 158)(128 159)(129 160)(130 161)(131 202)(132 203)(133 204)(134 205)(135 206)(136 207)(137 208)(138 196)(139 197)(140 198)(141 199)(142 200)(143 201)(144 186)(145 187)(146 188)(147 189)(148 190)(149 191)(150 192)(151 193)(152 194)(153 195)(154 183)(155 184)(156 185)
(1 29 24 41)(2 30 25 42)(3 31 26 43)(4 32 14 44)(5 33 15 45)(6 34 16 46)(7 35 17 47)(8 36 18 48)(9 37 19 49)(10 38 20 50)(11 39 21 51)(12 27 22 52)(13 28 23 40)(53 79 66 101)(54 80 67 102)(55 81 68 103)(56 82 69 104)(57 83 70 92)(58 84 71 93)(59 85 72 94)(60 86 73 95)(61 87 74 96)(62 88 75 97)(63 89 76 98)(64 90 77 99)(65 91 78 100)(105 138 129 150)(106 139 130 151)(107 140 118 152)(108 141 119 153)(109 142 120 154)(110 143 121 155)(111 131 122 156)(112 132 123 144)(113 133 124 145)(114 134 125 146)(115 135 126 147)(116 136 127 148)(117 137 128 149)(157 189 177 206)(158 190 178 207)(159 191 179 208)(160 192 180 196)(161 193 181 197)(162 194 182 198)(163 195 170 199)(164 183 171 200)(165 184 172 201)(166 185 173 202)(167 186 174 203)(168 187 175 204)(169 188 176 205)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169)(170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195)(196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 158)(2 157)(3 169)(4 168)(5 167)(6 166)(7 165)(8 164)(9 163)(10 162)(11 161)(12 160)(13 159)(14 175)(15 174)(16 173)(17 172)(18 171)(19 170)(20 182)(21 181)(22 180)(23 179)(24 178)(25 177)(26 176)(27 192)(28 191)(29 190)(30 189)(31 188)(32 187)(33 186)(34 185)(35 184)(36 183)(37 195)(38 194)(39 193)(40 208)(41 207)(42 206)(43 205)(44 204)(45 203)(46 202)(47 201)(48 200)(49 199)(50 198)(51 197)(52 196)(53 115)(54 114)(55 113)(56 112)(57 111)(58 110)(59 109)(60 108)(61 107)(62 106)(63 105)(64 117)(65 116)(66 126)(67 125)(68 124)(69 123)(70 122)(71 121)(72 120)(73 119)(74 118)(75 130)(76 129)(77 128)(78 127)(79 135)(80 134)(81 133)(82 132)(83 131)(84 143)(85 142)(86 141)(87 140)(88 139)(89 138)(90 137)(91 136)(92 156)(93 155)(94 154)(95 153)(96 152)(97 151)(98 150)(99 149)(100 148)(101 147)(102 146)(103 145)(104 144)
G:=sub<Sym(208)| (1,128)(2,129)(3,130)(4,118)(5,119)(6,120)(7,121)(8,122)(9,123)(10,124)(11,125)(12,126)(13,127)(14,107)(15,108)(16,109)(17,110)(18,111)(19,112)(20,113)(21,114)(22,115)(23,116)(24,117)(25,105)(26,106)(27,147)(28,148)(29,149)(30,150)(31,151)(32,152)(33,153)(34,154)(35,155)(36,156)(37,144)(38,145)(39,146)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,131)(49,132)(50,133)(51,134)(52,135)(53,180)(54,181)(55,182)(56,170)(57,171)(58,172)(59,173)(60,174)(61,175)(62,176)(63,177)(64,178)(65,179)(66,160)(67,161)(68,162)(69,163)(70,164)(71,165)(72,166)(73,167)(74,168)(75,169)(76,157)(77,158)(78,159)(79,196)(80,197)(81,198)(82,199)(83,200)(84,201)(85,202)(86,203)(87,204)(88,205)(89,206)(90,207)(91,208)(92,183)(93,184)(94,185)(95,186)(96,187)(97,188)(98,189)(99,190)(100,191)(101,192)(102,193)(103,194)(104,195), (1,78)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,76)(13,77)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,53)(26,54)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,90)(41,91)(42,79)(43,80)(44,81)(45,82)(46,83)(47,84)(48,85)(49,86)(50,87)(51,88)(52,89)(105,180)(106,181)(107,182)(108,170)(109,171)(110,172)(111,173)(112,174)(113,175)(114,176)(115,177)(116,178)(117,179)(118,162)(119,163)(120,164)(121,165)(122,166)(123,167)(124,168)(125,169)(126,157)(127,158)(128,159)(129,160)(130,161)(131,202)(132,203)(133,204)(134,205)(135,206)(136,207)(137,208)(138,196)(139,197)(140,198)(141,199)(142,200)(143,201)(144,186)(145,187)(146,188)(147,189)(148,190)(149,191)(150,192)(151,193)(152,194)(153,195)(154,183)(155,184)(156,185), (1,29,24,41)(2,30,25,42)(3,31,26,43)(4,32,14,44)(5,33,15,45)(6,34,16,46)(7,35,17,47)(8,36,18,48)(9,37,19,49)(10,38,20,50)(11,39,21,51)(12,27,22,52)(13,28,23,40)(53,79,66,101)(54,80,67,102)(55,81,68,103)(56,82,69,104)(57,83,70,92)(58,84,71,93)(59,85,72,94)(60,86,73,95)(61,87,74,96)(62,88,75,97)(63,89,76,98)(64,90,77,99)(65,91,78,100)(105,138,129,150)(106,139,130,151)(107,140,118,152)(108,141,119,153)(109,142,120,154)(110,143,121,155)(111,131,122,156)(112,132,123,144)(113,133,124,145)(114,134,125,146)(115,135,126,147)(116,136,127,148)(117,137,128,149)(157,189,177,206)(158,190,178,207)(159,191,179,208)(160,192,180,196)(161,193,181,197)(162,194,182,198)(163,195,170,199)(164,183,171,200)(165,184,172,201)(166,185,173,202)(167,186,174,203)(168,187,175,204)(169,188,176,205), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169)(170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208), (1,158)(2,157)(3,169)(4,168)(5,167)(6,166)(7,165)(8,164)(9,163)(10,162)(11,161)(12,160)(13,159)(14,175)(15,174)(16,173)(17,172)(18,171)(19,170)(20,182)(21,181)(22,180)(23,179)(24,178)(25,177)(26,176)(27,192)(28,191)(29,190)(30,189)(31,188)(32,187)(33,186)(34,185)(35,184)(36,183)(37,195)(38,194)(39,193)(40,208)(41,207)(42,206)(43,205)(44,204)(45,203)(46,202)(47,201)(48,200)(49,199)(50,198)(51,197)(52,196)(53,115)(54,114)(55,113)(56,112)(57,111)(58,110)(59,109)(60,108)(61,107)(62,106)(63,105)(64,117)(65,116)(66,126)(67,125)(68,124)(69,123)(70,122)(71,121)(72,120)(73,119)(74,118)(75,130)(76,129)(77,128)(78,127)(79,135)(80,134)(81,133)(82,132)(83,131)(84,143)(85,142)(86,141)(87,140)(88,139)(89,138)(90,137)(91,136)(92,156)(93,155)(94,154)(95,153)(96,152)(97,151)(98,150)(99,149)(100,148)(101,147)(102,146)(103,145)(104,144)>;
G:=Group( (1,128)(2,129)(3,130)(4,118)(5,119)(6,120)(7,121)(8,122)(9,123)(10,124)(11,125)(12,126)(13,127)(14,107)(15,108)(16,109)(17,110)(18,111)(19,112)(20,113)(21,114)(22,115)(23,116)(24,117)(25,105)(26,106)(27,147)(28,148)(29,149)(30,150)(31,151)(32,152)(33,153)(34,154)(35,155)(36,156)(37,144)(38,145)(39,146)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,131)(49,132)(50,133)(51,134)(52,135)(53,180)(54,181)(55,182)(56,170)(57,171)(58,172)(59,173)(60,174)(61,175)(62,176)(63,177)(64,178)(65,179)(66,160)(67,161)(68,162)(69,163)(70,164)(71,165)(72,166)(73,167)(74,168)(75,169)(76,157)(77,158)(78,159)(79,196)(80,197)(81,198)(82,199)(83,200)(84,201)(85,202)(86,203)(87,204)(88,205)(89,206)(90,207)(91,208)(92,183)(93,184)(94,185)(95,186)(96,187)(97,188)(98,189)(99,190)(100,191)(101,192)(102,193)(103,194)(104,195), (1,78)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,76)(13,77)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,53)(26,54)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,90)(41,91)(42,79)(43,80)(44,81)(45,82)(46,83)(47,84)(48,85)(49,86)(50,87)(51,88)(52,89)(105,180)(106,181)(107,182)(108,170)(109,171)(110,172)(111,173)(112,174)(113,175)(114,176)(115,177)(116,178)(117,179)(118,162)(119,163)(120,164)(121,165)(122,166)(123,167)(124,168)(125,169)(126,157)(127,158)(128,159)(129,160)(130,161)(131,202)(132,203)(133,204)(134,205)(135,206)(136,207)(137,208)(138,196)(139,197)(140,198)(141,199)(142,200)(143,201)(144,186)(145,187)(146,188)(147,189)(148,190)(149,191)(150,192)(151,193)(152,194)(153,195)(154,183)(155,184)(156,185), (1,29,24,41)(2,30,25,42)(3,31,26,43)(4,32,14,44)(5,33,15,45)(6,34,16,46)(7,35,17,47)(8,36,18,48)(9,37,19,49)(10,38,20,50)(11,39,21,51)(12,27,22,52)(13,28,23,40)(53,79,66,101)(54,80,67,102)(55,81,68,103)(56,82,69,104)(57,83,70,92)(58,84,71,93)(59,85,72,94)(60,86,73,95)(61,87,74,96)(62,88,75,97)(63,89,76,98)(64,90,77,99)(65,91,78,100)(105,138,129,150)(106,139,130,151)(107,140,118,152)(108,141,119,153)(109,142,120,154)(110,143,121,155)(111,131,122,156)(112,132,123,144)(113,133,124,145)(114,134,125,146)(115,135,126,147)(116,136,127,148)(117,137,128,149)(157,189,177,206)(158,190,178,207)(159,191,179,208)(160,192,180,196)(161,193,181,197)(162,194,182,198)(163,195,170,199)(164,183,171,200)(165,184,172,201)(166,185,173,202)(167,186,174,203)(168,187,175,204)(169,188,176,205), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169)(170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208), (1,158)(2,157)(3,169)(4,168)(5,167)(6,166)(7,165)(8,164)(9,163)(10,162)(11,161)(12,160)(13,159)(14,175)(15,174)(16,173)(17,172)(18,171)(19,170)(20,182)(21,181)(22,180)(23,179)(24,178)(25,177)(26,176)(27,192)(28,191)(29,190)(30,189)(31,188)(32,187)(33,186)(34,185)(35,184)(36,183)(37,195)(38,194)(39,193)(40,208)(41,207)(42,206)(43,205)(44,204)(45,203)(46,202)(47,201)(48,200)(49,199)(50,198)(51,197)(52,196)(53,115)(54,114)(55,113)(56,112)(57,111)(58,110)(59,109)(60,108)(61,107)(62,106)(63,105)(64,117)(65,116)(66,126)(67,125)(68,124)(69,123)(70,122)(71,121)(72,120)(73,119)(74,118)(75,130)(76,129)(77,128)(78,127)(79,135)(80,134)(81,133)(82,132)(83,131)(84,143)(85,142)(86,141)(87,140)(88,139)(89,138)(90,137)(91,136)(92,156)(93,155)(94,154)(95,153)(96,152)(97,151)(98,150)(99,149)(100,148)(101,147)(102,146)(103,145)(104,144) );
G=PermutationGroup([[(1,128),(2,129),(3,130),(4,118),(5,119),(6,120),(7,121),(8,122),(9,123),(10,124),(11,125),(12,126),(13,127),(14,107),(15,108),(16,109),(17,110),(18,111),(19,112),(20,113),(21,114),(22,115),(23,116),(24,117),(25,105),(26,106),(27,147),(28,148),(29,149),(30,150),(31,151),(32,152),(33,153),(34,154),(35,155),(36,156),(37,144),(38,145),(39,146),(40,136),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,131),(49,132),(50,133),(51,134),(52,135),(53,180),(54,181),(55,182),(56,170),(57,171),(58,172),(59,173),(60,174),(61,175),(62,176),(63,177),(64,178),(65,179),(66,160),(67,161),(68,162),(69,163),(70,164),(71,165),(72,166),(73,167),(74,168),(75,169),(76,157),(77,158),(78,159),(79,196),(80,197),(81,198),(82,199),(83,200),(84,201),(85,202),(86,203),(87,204),(88,205),(89,206),(90,207),(91,208),(92,183),(93,184),(94,185),(95,186),(96,187),(97,188),(98,189),(99,190),(100,191),(101,192),(102,193),(103,194),(104,195)], [(1,78),(2,66),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,73),(10,74),(11,75),(12,76),(13,77),(14,55),(15,56),(16,57),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,65),(25,53),(26,54),(27,98),(28,99),(29,100),(30,101),(31,102),(32,103),(33,104),(34,92),(35,93),(36,94),(37,95),(38,96),(39,97),(40,90),(41,91),(42,79),(43,80),(44,81),(45,82),(46,83),(47,84),(48,85),(49,86),(50,87),(51,88),(52,89),(105,180),(106,181),(107,182),(108,170),(109,171),(110,172),(111,173),(112,174),(113,175),(114,176),(115,177),(116,178),(117,179),(118,162),(119,163),(120,164),(121,165),(122,166),(123,167),(124,168),(125,169),(126,157),(127,158),(128,159),(129,160),(130,161),(131,202),(132,203),(133,204),(134,205),(135,206),(136,207),(137,208),(138,196),(139,197),(140,198),(141,199),(142,200),(143,201),(144,186),(145,187),(146,188),(147,189),(148,190),(149,191),(150,192),(151,193),(152,194),(153,195),(154,183),(155,184),(156,185)], [(1,29,24,41),(2,30,25,42),(3,31,26,43),(4,32,14,44),(5,33,15,45),(6,34,16,46),(7,35,17,47),(8,36,18,48),(9,37,19,49),(10,38,20,50),(11,39,21,51),(12,27,22,52),(13,28,23,40),(53,79,66,101),(54,80,67,102),(55,81,68,103),(56,82,69,104),(57,83,70,92),(58,84,71,93),(59,85,72,94),(60,86,73,95),(61,87,74,96),(62,88,75,97),(63,89,76,98),(64,90,77,99),(65,91,78,100),(105,138,129,150),(106,139,130,151),(107,140,118,152),(108,141,119,153),(109,142,120,154),(110,143,121,155),(111,131,122,156),(112,132,123,144),(113,133,124,145),(114,134,125,146),(115,135,126,147),(116,136,127,148),(117,137,128,149),(157,189,177,206),(158,190,178,207),(159,191,179,208),(160,192,180,196),(161,193,181,197),(162,194,182,198),(163,195,170,199),(164,183,171,200),(165,184,172,201),(166,185,173,202),(167,186,174,203),(168,187,175,204),(169,188,176,205)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169),(170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195),(196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,158),(2,157),(3,169),(4,168),(5,167),(6,166),(7,165),(8,164),(9,163),(10,162),(11,161),(12,160),(13,159),(14,175),(15,174),(16,173),(17,172),(18,171),(19,170),(20,182),(21,181),(22,180),(23,179),(24,178),(25,177),(26,176),(27,192),(28,191),(29,190),(30,189),(31,188),(32,187),(33,186),(34,185),(35,184),(36,183),(37,195),(38,194),(39,193),(40,208),(41,207),(42,206),(43,205),(44,204),(45,203),(46,202),(47,201),(48,200),(49,199),(50,198),(51,197),(52,196),(53,115),(54,114),(55,113),(56,112),(57,111),(58,110),(59,109),(60,108),(61,107),(62,106),(63,105),(64,117),(65,116),(66,126),(67,125),(68,124),(69,123),(70,122),(71,121),(72,120),(73,119),(74,118),(75,130),(76,129),(77,128),(78,127),(79,135),(80,134),(81,133),(82,132),(83,131),(84,143),(85,142),(86,141),(87,140),(88,139),(89,138),(90,137),(91,136),(92,156),(93,155),(94,154),(95,153),(96,152),(97,151),(98,150),(99,149),(100,148),(101,147),(102,146),(103,145),(104,144)]])
128 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4H | 4I | ··· | 4P | 13A | ··· | 13F | 26A | ··· | 26AP | 52A | ··· | 52AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | ··· | 1 | 13 | ··· | 13 | 1 | ··· | 1 | 13 | ··· | 13 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
128 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | D13 | D26 | D26 | C4×D13 |
kernel | C22×C4×D13 | C2×C4×D13 | C22×Dic13 | C22×C52 | C23×D13 | C22×D13 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 1 | 1 | 16 | 6 | 36 | 6 | 48 |
Matrix representation of C22×C4×D13 ►in GL5(𝔽53)
52 | 0 | 0 | 0 | 0 |
0 | 52 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 52 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
52 | 0 | 0 | 0 | 0 |
0 | 23 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 52 | 0 |
0 | 0 | 0 | 0 | 52 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 52 | 9 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(53))| [52,0,0,0,0,0,52,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,52,0,0,0,0,0,1,0,0,0,0,0,1],[52,0,0,0,0,0,23,0,0,0,0,0,1,0,0,0,0,0,52,0,0,0,0,0,52],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,52,0,0,0,1,9],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;
C22×C4×D13 in GAP, Magma, Sage, TeX
C_2^2\times C_4\times D_{13}
% in TeX
G:=Group("C2^2xC4xD13");
// GroupNames label
G:=SmallGroup(416,213);
// by ID
G=gap.SmallGroup(416,213);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,69,13829]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^13=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations